Author:
Lee Jim H.,Prud'homme Robert K.,Aksay Ilhan A.
Abstract
The depth of photocuring for a model resin system was investigated as a function of photoinitiator concentration. Direct measurements of gel thickness were made from thin films of cross-linked multifunctional methacrylate monomer. The monomer, 2,2-bis{4-[2-hydroxy-3-(methacryloxy)propoxy]phenyl}propane, was polymerized in a solution of trichloroethylene with an ultraviolet laser light source at 325 nm. The monomer solutions were photocured using varying levels of both photonic energy and photoinitiator concentration. An optimal photoinitiator concentration that maximized the gel cure depth was observed. Additionally, two regimes were shown to exist in which the shrinkage (upon solvent removal) was minimized or maximized. A model was developed to probe the physics of the system. Good agreement with experiment was obtained, and the model may be employed to predict both the existence and location of the optimal photoinitiator concentration and the corresponding cure depth. The study showed that photoinitiator plays a significant role in controlling the quality and performance of the formed gel network, with special regard to thickness of cured layers. This has potential application to fields as diverse as industrially cured coatings and dental fillings, and more generally, 3-dimensional rapid prototyping techniques.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
247 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献