Growth of melt-textured Nd-123 by hot seeding under reduced oxygen partial pressure

Author:

Kambara M.,Babu N. Hari,Shi Y. H.,Cardwell D. A.

Abstract

The growth of large, melt-textured Nd1+xBa2−xCu3O6+δ (Nd-123) crystals has been achieved by hot seeding and isothermal solidification under a 1% oxygen in nitrogen atmosphere. These crystals, which exhibit a sharp, faceted growth interface, were grown epitaxially from a small Nd-123 single crystal seed placed on the sample surface at elevated temperature. The growth length of the melt-processed crystal was directly proportional to the isothermal holding time (approximately 17 h), as is observed for the growth of YBa2Cu3O7−δ (Y-123). The variation of growth rate with undercooling for this material was linear, however, in contrast to the parabolic dependence observed for Y-123 crystals grown in air. The growth rate of Nd-123 under reduced oxygen was consequently lower than that of Nd-123 and Y-123 grown in air at relatively high values of undercooling. Evaluation of the experimental data against a solidification models suggested that the interface kinetics are responsible, at least in part, for the observed growth features in hot-seeded Nd-123 crystals. This was attributed to the difference in oxygen partial pressure under the respective growth atmospheres, rather than to the species of rare-earth element in the compound.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3