Thin-film fracture during nanoindentation of a titanium oxide film–titanium system

Author:

Pang M.,Bahr D. F.

Abstract

Nanoindentation testing of the titanium oxide/titanium system with electrochemically grown oxide films exhibits permanent deformation prior to a yield excusion, indicating that the occurrence of this suddent discontinuity is predominantly controlled by oxide film cracking rather than dislocaton nucleation and multiplication. Observations of circumferential cracking also lend support to this explanation. A model has been developed to predict the mechanical response prior to oxide fracture for the case of a hard coating on a soft substrate. During loading contact, the hard coating undergoes elastic deflection which may include both bending and membrane stretching effects, while the substrate is elastoplastically deformed. The model works well for surface films thicker than 20 nm. Additionally, the maximum radial tensile stress in anodically grown titanium oxide, which is responsible for film cracking at the critical load, is approximately 15 GPa.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3