Combustion synthesis of mechanically activated powders in the Ti–Si system

Author:

Maglia F.,Anselmi-Tamburini U.,Cocco G.,Monagheddu M.,Bertolino N.,Munir Z. A.

Abstract

The effect of the mechanical activation of the reactants on the self-propagating high-temperature synthesis (SHS) of titanium silicides was investigated. SHS experiments were performed on reactant powders that were milled for different times. Mechanical activation was shown to have a large influence on the combustion characteristics, particularly on wave speed. A much weaker effect was observed on the products phase composition. Single-phase products were obtained only from Ti:Si = 1:2 and Ti:Si = 5:3 starting compositions. Observation of microstructural evolution in quenched reactions of Ti:Si = 1:2 mixtures milled for relatively long times revealed that the combustion reaction was primarily a solid-state process restricted to a surface layer of the large Ti grains. A secondary process involving a solid–liquid interaction between solid Ti and melted Si was dominant in the post front region. The mechanical activation in this case took the role of increasing the contact surface between the reactants. A single reaction coalescence mechanism involving only liquid phases was proposed for the Ti:Si = 5:3 composition. For this composition the apparent activation energy for the overall combustion process was determined (155 kJ mol−1) and was shown to be independent on the degree of mechanical activation of the reactants.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3