Mechanism of improvement of TiN-coated tool life by nitrogen implantation

Author:

Bull S. J.,Sharkeev Yu. P.,Fortuna S. V.,Shulepov I. A.,Perry A. J.

Abstract

The life of TiN-coated tools can be improved by a post-coating ion implantation treatment, but the mechanism by which this occurs is still not clear. Nitrogen implantation of both physical-vapor-deposited TiN and CVD TiN leads to surface softening as the dose increases, which has been attributed to amorphization. In this study a combination of transmission electron microscopy and atomic force microscopy was used to characterize the microstructure of implanted TiN coatings on cemented carbide for comparison with mechanical property measurements (nanoindentation, residual stress, etc.), made on the same samples. Ion implantation leads to a slight reduction in the grain size of the TiN in the implanted zone, but there is no evidence for amorphization. Surface softening is observed for physical-vapor-deposited TiN, but this is probably due to a combination of changes in surface composition and the presence of a layer of bubbles generated by the very high implantation doses used.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3