Author:
Saida Junji,Li Chunfei,Matsushita Mitsuhide,Inoue Akihisa
Abstract
The transformation behavior from glassy state was investigated in Zr- and Hf-based glassy alloys. The primary phases are metastable face-centered-cubic (fcc) Zr2Ni and fcc Hf2Ni phases in the Zr65Al7.5Ni10Cu17.5 and Hf65Al7.5Ni10Cu17.5 glassy alloys, respectively. By substitution of 5 at.% Pd for Cu, the primary phase changes to an icosahedral quasicrystalline phase in both alloys. It is found that the addition of elements, which have a positive or weak chemical affinity with one of the constitutional elements in the Zr–Al–Ni–Cu and Hf–Al–Ni–Cu glassy alloys, is effective for the precipitation of the icosahedral phase. It is suggested that Pd plays a dominant role in an increase in the number of nucleation sites. Since an icosahedron is contained as a structure unit in the icosahedral, fcc Zr2Ni and fcc Hf2Ni phases, it is implied that these phases are correlated with the local icosahedral order. The high-resolution transmission electron microscopy images of the as-spun Zr65Al7.5Ni10Cu7.5Pd10 and Hf65Al7.5Ni10Cu12.5Pd5 alloys reveal a possibility of the existence of the icosahedral ordered regions. It is therefore, concluded that the icosahedral short- or medium-range order exists and it stabilizes the glassy state in the Zr- and Hf-based multicomponent alloys.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献