Author:
Inoue Akihisa,Zhang Wei,Zhang Tao,Kurosaka Kei
Abstract
High-strength Cu-based bulk glassy alloys were formed in the Cu–Hf–Ti system by the copper mold casting and melt clamp forging methods. The maximum diameter is 4 mm for the Cu60Hf25Ti15 alloy. The substitution of Hf in the Cu60Hf40 alloy by Ti causes an increase in the glass-forming ability (GFA). As the Ti content increases, the glass transition temperature (Tg) decreases, while the crystallization temperature (Tx) shows a maximum at 5% Ti and then decreases, resulting in a maximum supercooled liquid region ΔTx (= Tx − Tg) of 78 K at 5% Ti. The liquidus temperature (T1) has a minimum of 1172 K around 20% Ti, and hence, a maximum Tg//T1 of 0.62 is obtained at 20% Ti. The high GFA was obtained at the compositions with high Tg/T1. The bulk glassy alloy exhibits tensile fracture strength of 2130 MPa, compressive fracture strength of 2160 MPa, and compressive plastic elongation of 0.8 to 1.6%. The new Cu-based bulk glassy alloys with high Tg/T1 above 0.60, high fracture strength above 2100 MPa, and distinct plastic elongation are encouraging for future development as a new type of bulk glassy alloy that can be used for structural materials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献