Defect Distributions in Doped and Undoped A-SiGe:H Alloys

Author:

Stiebig Helmut,Siebke Frank,Carius Reinhard,Klomfaβ Josef

Abstract

ABSTRACTIn this work, gap states in doped and undoped a-SiGe:H alloys are examined by numerical simulations of sub-bandgap absorption spectra measured by the constant photocurrent method and photothermal deflection spectroscopy. Deconvolution methods, neglecting the condition of charge neutrality, can be used for a rough estimate of the defect density value but not for ob- taining detailed information on the distribution of gap states in undoped samples. Our numerical analysis uses adapted occupation statistics and takes into account the condition of charge neutrality. Good agreement between measured and simulated PDS and CPM spectra is obtained. For a certain composition, i.e. a certain bandgap, the investigation of doped films yields infor- mation on the density and the position of charged defect states in the bandgap. In addition, the density of neutral defect states can be derived from a comparison of CPM and PDS spectra. The results reveal the coexistence of charged and neutral defects. In doped as well as in undoped films, charged defect states dominate the defect density. In the investigated range of compo- sitions the defect distribution of a-SiGe:H is similar to those found in a-Si:H. The width of the defect distributions does not decrease with decreasing bandgap. No evidence for a different be- havior of Si- and Ge-related defect states can be found in sub-bandgap absorption spectra.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-aided band gap engineering and experimental verification of amorphous silicon–germanium solar cells;Solar Energy Materials and Solar Cells;2004-01

2. Optical, Electronic and Structural Properties;Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology;1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3