Author:
Vinci Richard P.,Bravman John C.
Abstract
AbstractWafer curvature and grazing incidence x-ray scattering (GIXS) techniques were used to investigate the biaxial stresses induced in blanket Cu films during a thermal cycle to 460°C and back to room temperature. Cu was deposited by DC sputtering at ambient temperature. Several different barrier layer materials — SiO2, W, Ta, TiN, and Si3N4 — were used to compare any effect barrier choice might have on Cu microstructure evolution and mechanical behavior. Ta and Si3N4 encouraged a strong (111) Cu texture. A W barrier led to an untextured microstructure which underwent large, uneven grain growth during thermal cycling. Several samples were capped with a Ta layer which affected the stress behavior during cooling by inhibiting dislocation motion. An inverse relationship between strength and thickness was also documented.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献