Study of TaSi2-Si Crystals with High Energy Synchrotron Radiation as Tunable Wide-bandpass Monochromator and Analyzer Optics

Author:

Rütt U.,Stock S.R.,Rek Z.U.

Abstract

AbstractSingle crystals of the in situ composite TaSi2-Si are candidates for wide bandpass monochromators and analyzers for x-ray experiments. Two large crystals (32 × 39 × 7 mm3 and 32 x 39 x 30 mm3) were studied in detail using 115 keV synchrotron radiation at the BESSRC beamline at the APS. For transmission geometry, the Si(111) reflection and 39 mm crystal thickness, rocking curve widths of 95 arc sec with reflectivities of 50% were measured over the entire crystal. Turning the crystal to an angle of 45° to the incident beam and translating it through the beam allowed investigation of the influence of crystal thickness on diffracted intensity. For sample thicknesses ranging between 5 mm and 12.5 mm, the full width at half maximum (FWHM) of the rocking curve increased linearly from 29 arc sec to 53 arc sec. The greatest gain in integrated intensity was obtained for 8-9 mm thickness where FWHM = 40 arc sec. If this crystal were used as a monochromator for synchrotron radiation, it would provide 40 times more intensity than a perfect silicon crystal and an energy bandwidth of 1 keV at 115 keV photon energy. With the increase of the rocking curve FWHM, a plateau across the peak maximum developed; its width increased from 5 arc sec to 25 arc sec when the crystal thickness increased from 5 mm to 12.5 mm, respectively. This plateau allows these crystals to be used as analyzer crystals in diffraction experiments, i.e., as very narrow slits to suppress background. A plateau width of about 5-20 arc sec for the analyzer crystal is needed to insure that the entire intensity scattered from a sample is delivered to the detector. The simple expedient of changing the crystal thickness alters the plateau width of the analyzer crystal and tunes its acceptance to the needs of the sample under study.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3