Design of Nano-Composites for Ultra-High Strengths and Radiation Damage Tolerance

Author:

Misra Amit,Zhang X.,Demkowicz M. J.,Hoagland R. G.,Nastasi M.

Abstract

AbstractThe combination of high strength and high radiation damage tolerance in nanolaminate composites can be achieved when the individual layers in these composites are only a few nanometers thick and therefore these materials contain a large volume fraction associated with interfaces. These interfaces act both as obstacles to slip, as well as sinks for radiation-induced defects. The morphological and phase stabilities of these nano-composites under ion irradiation are explored as a function of layer thickness, temperature and interface structure. Using results on model systems such as Cu-Nb, we highlight the critical role of the atomic structure of the incoherent interfaces that exhibit multiple states with nearly degenerate energies in acting as sinks for radiation-induced point defects. Reduced radiation damage also leads to a reduction in the irradiation hardening, particularly at layer thickness of approximately 5 nm and below. The strategies for design of radiation-tolerant structural materials based on the knowledge gained from this work will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3