Nanotesla Detection Using the Planar Hall Effect

Author:

Schuhl A.,Van Dau F. Nguyen,Childress J.R.

Abstract

ABSTRACTA magnetic field sensor based on the planar Hall effect has been developed using epitaxial permalloy (Ni80Fe20) ultrathin films (1-10 nm). The magnetic and magnetotransport properties of these films have been studied in detail. For thicknesses above 5 nm, the resistivity of the permalloy film is below 5μΩ-cm, and its magnetoresistance ratio is 2%. By using the transverse resistivity for detection, we have reduced thermal drift effects by five orders of magnitude. We also make use of a weak uniaxial anisotropy induced in the permalloy through exchange coupling with a 6 nm-thick Fe/Pd multilayer, itself grown directly on the MgO substrate. Magnetic sensors based on these films have been used successfully to detect fields below 10 nT at 1Hz. Since the lateral dimensions of the sensing element are small (<30μm), and because of the ferromagnetic coupling with the Fe/Pd structure, it consists of a single magnetic domain. Sensitivities above 100 V/T-A have been obtained, with deviations from linearity of less than 2% over 4 decades.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3