Optical Non-Invasive Evaluation of Ferroelectric Films/Memory Capacitors

Author:

Thakoor Sarita,Thakoor A. P.,Cross L. Eric

Abstract

AbstractNON-INVASIVE photoresponse (photocurrent/voltage, reflectance and transmittance) from ferroelectric thin films and memory capacitors, with its strong dependence not only on the remanent polarization, but also on the film microstructure, crystal orientation, and nature of the interfaces (state of formation/degradation, etc.) offers an excellent “tool” for probing the ferroelectric capacitors at virtually any stage of fabrication, including on-line quality control. In fact, simultaneous measurement of spectral photoresponse and spectral reflectance, as a distinctive signature of the device probed, is an ideal, high speed, non-invasive means of evaluation for such thin films at high spatial resolution (∼ 100 nm) using beam scanning. This paper discusses three aspects of such evaluation. First, the spectral transmittance of the film as a direct function of the microstructure, second, the use of band-gap illumination (365 nm) to condition a fatigued capacitor; and third, the optical E field interaction with the ferroelectric capacitor, yielding a high speed photoresponse which is related to the remanent polarization and the operational history (status of internal fields) of the ferroelectric capacitor. Combined, these different kinds of photoresponses provide a good signature of the device quality.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference23 articles.

1. 17. Thakoor S. , U. S. Patent # 5196101, March 23, 1993.

2. 16. Thakoor S. , New Technology Report # NPO - 19393/8994. S. Thakoor, NASA TechBriefs, Vol. 17, p. 54 May (1993).

3. TdC20. High speed opto-electronic non-destructive readout prom ferroelectric thin film capacitors

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3