Characterization of Defects Created in Silicon Due to Etching in Low-Pressure Plasmas Containing Fluorine and Oxygen

Author:

Buyanova I. A.,Henry A.,Monemar B.,Lindström J. L.,Lamprecht A.,Svensson B. G.,Oehrlein G. S.

Abstract

AbstractDefect characterization in n-type silicon after the reactive ion etching (RIE) in low-pressure plasmas containing fluorine and oxygen is performed by using photoluminescence (PL) and deep level transient spectroscopies (DLTS). It is shown that RIE treatment results in the formation of (i) luminescence centers giving rise to the C- and G- excitonic lines and broad emission bands related to radiation-induced defect complexes and extended defects and (ii) several electron traps located at 0.16 eV, 0.26 eV, 0.43 eV and 0.58 eV below the conduction band. The addition of oxygen to the SF6 and CF4 plasma is shown to cause nonuniform stress in the near surface region. This stress is responsible for the experimentally observed splitting of the C- and G-excitonic lines, a low energy shift of the phosphorous bound exciton lines, as well as the splitting of the DLTS spectra. It is shown that the stress field is highly inhomogeneous across the wafer, and is rather related to the RIE-induced extended defects than caused by the reaction layer formed on the Si surface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3