The Influence of Ligands and Precipitates on the Release of Nuclides from the Near Field under Natural Repository Conditions

Author:

Liu L.,Neretnieks I.

Abstract

ABSTRACTOnce groundwater intrudes into a damaged canister and wets the spent fuel pellets, radiation emitted from the spent nuclear fuel splits nearby water into oxidizing and reducing species. This may lead to an oxidizing condition near the fuel pellets. As a result, uranium oxide that makes up the fuel matrix will become more soluble, and the incorporated radionuclides will be released more rapidly. The dissolution process is, however, a dynamic one that can be influenced by many factors. Of great importance are the radiation power of the fuel matrix, the concentration of ligands near the fuel surface, and the transport resistance of the near field. Consequently, the escape of nuclides from the damaged canister is dominated mainly by the intrusion of ligands, and the precipitation/dissolution of secondary phases within the fuel rods. To investigate the possible effects of ligands and precipitates, a coupled dissolution and transport model, which includes the barrier effect of the Zircaloy claddings, is developed. The application of the model to a SKB-specified reference scenario indicates that by far the largest fraction of the oxidized uranium will reprecipitate within the canister. This may significantly decrease the fuel surface available for oxidation and the water available for radiolysis. Subsequently, much less fuel matrix will be dissolved and much less of the other nuclides will be released. Simulations further identify that carbonate and silicate have the greatest influences on the formation of secondary phases, and on the release of nuclides, under natural repository conditions.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3