Author:
Siegel R. W.,Eastman J. A.
Abstract
ABSTRACTUltrafine-grained ceramics have been synthesized by the production of ultrafine (2–20 nm) particles, using the gas-condensation method, followed by their in-situ, ultra-high vacuum consolidation at room temperature. These new nanophase ceramics have properties that are significantly improved relative to those of their coarser-grained, conventionally-prepared counterparts. For example, nanophase rutile (TiO2) with an initial mean grain diameter of 12 nm sinters at 400 to 600°C lower temperatures than conventional powders, without the need for compacting or sintering aids. The sintered nanophase rutile exhibits both improved microhardness and fracture characteristics. These property improvements result from the reduced scale of the grains and the increased cleanliness of the particle surfaces and the subsequently-formed grain boundaries. Research completed on the synthesis, characterization, and properties of nanophase ceramics is reviewed and the potential for using the nanophase synthesis method for engineering new and/or improved ceramics and composites is considered.
Publisher
Springer Science and Business Media LLC
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献