Pre-Yield Strain Hardening in Thermoplastics

Author:

Martin David C.

Abstract

AbstractSuccessive stress relaxation testing was used to investigate the strain hardening of polypropylene and polystyrene in the stage of deformation before yielding. By combining this information with that of a stress relaxation test it was possible to measure the change in flow stress with plastic strain or “workhardening” parameter K. K has been associated with the nucleation of “defects” of some sort which slow down the kinetics of the deformation process.Both polymers were found to strain harden in this deformation region. In polystyrene, the amount of time need to relax through a fixed stress increment reached a plateau at a point corresponding with visible crazing in the gage section of the sample. The workhardening parameter K was determined and found to decrease with stress. By plotting the rate of change of flow stress with total strain plots were obtained which avoided the use of strain, an ill-defined parameter in materials which change state during deformation. From these plots it was seen that polystyrene exhibits a well-defined linear region at small strain whereas polypropylene deviates from linearity immediately. Hardening of polystyrene was observed even in the linear response regime.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3