Author:
McHargue C.J.,Sklad P.S.,White C.W.,Farlow G.C.,Perez A.,Marest G.
Abstract
Rutherford backscattering (RBS)-ion channeling, transmission electron microscopy (TEM), and conversion electron Mössbauer spectroscopy (CEMS) have been used to determine the structure of α–Al2O3 implanted with iron at room temperature. Changes produced by post-implantation annealing in oxidizing and reducing atmospheres were followed using the same techniques. Implantation of 160 keV Fe at room temperature produces a damaged but crystalline microstructure for fluences as high as 1 × 1017 Fe/cm2. The iron resides in a variety of local environments: three Fe2+ components, one Fe0 component, and two Fe4+ components. The relative amount of each component varies with implantation fluence. Only the Fe0 component seems to be associated with second-phase formation. In this case, 2 nm diameter α-iron particles were detected by TEM studies. Recovery of implantation-induced disorder in the Al- and oxygen-sublattices occurs in two stages for annealing in oxygen and in one continuous stage for hydrogen-annealing. The end state for iron is Fe3+ for oxygen anneals and Fe0 for hydrogen anneals. The precipitated phases observed are those to be expected from the equilibrium phase diagrams.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献