The relationship between thermal history and microstructure in spray-deposited tin-lead alloys

Author:

Bewlay B.P.,Cantor B.

Abstract

Gas-atomized spray deposition involves the creation of a spray of droplets by a gas atomizer and the consolidation and solidification of these droplets on a substrate. The present paper describes an investigation of the fundamental characteristics of heat transfer and solidification during spray deposition. Spray deposition was used to manufacture Sn-15 and 38 wt. % Pb preforms using atomizer-substrate distances of 180 and 360 mm, gas flow rates of 2.5 and 3.4 g/s, and melt flow rates of 61 and 35 g/s. Analytical and numerical models were developed to predict the thermal history of the spray deposit for a range of deposit-substrate heat transfer coefficients. A deposit-substrate heat transfer coefficient of ∼104 W m−2 K−1 was determined by comparing measured and calculated spray-deposit thermal histories both during and after spray deposition. Microstructural analysis of transverse sections of the spray deposits revealed maximum values of spray-deposit density and cell/grain size at specific distances from the deposit-substrate interface. The distance between the density and cell/grain-size maxima and the deposit-substrate interface increased from 0.9 to 10 mm for Sn–15 wt. % Pb and from 2.6 to 11.3 mm for Sn–38 wt. % Pb as the atomizer-substrate distance was increased from 180 to 360 mm and the melt to gas mass flow rate ratio was decreased from 24 to 10. The origin of these microstructural features is described in terms of heat transfer during spray deposition.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3