Synthesis of SiC/TaC ceramics from tantalum alkoxide modified polycarbosilane

Author:

Thorne Kevin,Liimatta Eric,Mackenzie John D.

Abstract

The reaction between tantalum ethoxide and an inorganic, silicon-carbon based polymer known as polycarbosilane resulted in a modified polymer that could be thermally converted into a binary ceramic of SiC and TaC. In this report, the initial reaction of the precursors and the high temperature transformations that resulted in the mixed ceramic carbide are discussed. The synthesis of this modified polymer was characterized using 29Si, 13C NMR, and infrared spectroscopy. The reaction involved cross-linking of polycarbosilane through bridging carbon bonds and the formation of Si–OCH2CH3 ligands. According to these data and to the low-angle x-ray diffraction data, the structure of the reaction product can be described as a network of modified polycarbosilane with intimately dispersed tantalum oxide particles. The structural transformations that occurred during inert atmosphere pyrolysis of the polymer product were determined using 29Si, 13C MAS NMR, infrared and x-ray diffraction spectroscopy. Inert atmosphere pyrolysis at temperatures below 500 °C involved continued cross-linking of polycarbosilane through the endothermic formation of bridging carbon bonds. During pyrolysis at 500 °C, an exothermic reaction between the modified polycarbosilane and the intimately dispersed tantalum oxide particles was observed. This reaction involved the formation of an inorganic, amorphous oxycarbide phase that can be described as a continuous network of C–Si–O and C–Ta–O bonds. At pyrolysis temperatures exceeding 1000 °C, carbothermal reduction of the oxide constituents initiated. Further pyrolysis at temperatures exceeding 1200 °C resulted in the crystallization of zinc-blend β–SiC and NaCl structured TaC.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference19 articles.

1. 29Si nuclear magnetic resonance studies of oligomeric and polymeric siloxanes: 4. Chemical shift effects of end-groups

2. 15. Soraru G. , Glisenti A. , Granozzi G. , Babonneau F. , and Mackenzie J. D. , to be published in J. Mater. Sci.

3. Ceramic fibres from polymer precursor containing Si-O-Ti bonds

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3