Pulse laser processing of a SiC/Al-alloy metal matrix composite

Author:

Dahotre Narendra B.,McCay Mary Helen,McCay T. Dwayne,Gopinathan Santosh,Allard Lawrence F.

Abstract

The microstructural changes and the tensile behavior of laser processed A356-Al alloy matrix composites reinforced with 10 and 20 vol.% SiC particulates are characterized. The autogenous bead-on-plate welds were made using a pulsed CO2 laser operating at a peak power level of 3.2 kW. The pulse on-time was constant at 20 ms and the off-time was varied from 20 to 2 ms (duty cycles of 50–91%). The microstructure of the laser melted region was investigated by optical, scanning, and transmission electron microscopy, and x-ray microchemical analysis techniques. The extent of microstructural changes varied directly with duty cycle, i.e., being a maximum for the longest (91%) duty cycles. Pulsed laser processing produced partial to complete dissolution of SiC particles and sometimes resulted in the formation of aluminum carbide. The associated rapid cooling also produced a fine distribution of nonequilibrium complex precipitates. In addition, the laser energy modified the SiC surface both physically and chemically. The results of tensile tests indicated that the modified SiC and the distribution of fine nonequilibrium precipitates enhance the mechanical properties of the laser processed composites. Optimum changes in microstructure and mechanical properties were obtained in the composites processed with intermediate (67 and 74%) duty cycles; therefore pulsed processing appears to be a strong candidate for successful joining of these MMCs.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3