Characterization and control of phase segregation in the fine particles of BaTiO3 and SrTiO3 synthesized by the spray pyrolysis method

Author:

Nonaka K.,Hayashi S.,Okada K.,Otsuka N.,Yano T.

Abstract

Fine particles of BaTiO3 and SrTiO3 have been synthesized by the spray pyrolysis technique, and the chemical homogeneity of their particles was analyzed by x-ray diffraction (XRD) and analytical electron microscopy (AEM). The stock solutions were prepared by dissolving Ti(OC3H7)4 and Ba(NO3)2 or Sr(NO3)2 in diluted nitric acid solution. They were atomized into a reaction chamber held at 1000 °C through a two-fluids atomizer with N2 gas. Mostly hollow spherical particles 3 μm in diameter were obtained, composed of very fine grains of 40 nm. As-prepared powders were crystallized to BaTiO3 or SrTiO3 with a small amount of by-product such as Ba2TiO4, Sr2TiO4, and TiO2. The AEM study revealed that the bulk composition of each particle was chemically homogeneous, but a local chemical composition segregation was observed within each particle. This chemical inhomogeneity was considered to be caused by the difference in the precipitating speed of each component from the precursor salts; that is, the precipitation of Ti4+ ion as TiO2 · xH2O was faster than those of Ba2+ and Sr2+ ions. To control this segregation, (a) replacing a part of the solvent of stock solutions with methanol or ethanol, (b) adding H2O2 to the solutions, and (c) increasing the concentration of the solution, are found to be effective. The reasons for these effects are discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference21 articles.

1. 12. Kubo K. and Zinriki K. , Kogyokagaku-zasshi 56, 335 (1953).

2. 7. Sakura O. , Miyauchi M. , Mizutani N. , and Kato M. , ibid. 97, 407 (1989).

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3