Author:
Murayama Norimitsu,Kodama Yasuharu,Sakaguchi Shuji,Wakai Fumihiro
Abstract
Superconducting Bi1.84Pb0.34Sr2.03Ca1.9Cu3.06Oy thick films were prepared on MgO substrates by screen printing with the powder consisting almost entirely of the 110 K phase. The thick film sandwiched between the two MgO substrates was then hot-pressed in air under various conditions. The thickness of the film was 20–40 μm. The degree of grain orientation was quantitatively evaluated through the image analysis on the SEM micrographs for the chemically etched cross sections of the samples. The degree of grain orientation and the critical current density (Jc) increased with increasing hot-pressing temperature. When hot-pressed at 855 °C under a constant pressure of 500 kg/cm2 for 270 min, the Jc had a maximum value of 9500 A/cm2 (77 K, 0 Oe), and the critical temperature was 110 K. When the hot-pressing pressure was higher than 200 kg/cm2, the degree of grain orientation was almost independent of hot-pressing pressure. Nevertheless, the Jc increased with increasing hot-pressing pressure. The relationship between the magnetic field dependence of Jc and hot-pressing conditions was examined.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献