What is the Limit of Nanoparticle Strengthening?

Author:

Chrzan D.C.,Morris J.W.,Osetsky Y.N.,Stoller R.E.,Zinkle S.J.

Abstract

AbstractThe stress required to deform a perfect crystal to its elastic limit while maintaining perfect periodicity, the so-called ideal strength, sets the gold standard for the strength of a given material. Materials this strong would be of obvious engineering importance, potentially enabling more efficient turbines for energy production, lighter materials for transportation applications, and more reliable materials for nuclear reactor applications. In practice, the strength of engineering materials is often more than two orders of magnitude less than the ideal strength due to easily activated deformation processes involving dislocations. For many materials, precipitate strengthening is a promising approach to impede dislocation motion and thereby improves strength and creep resistance. This observation begs the question: What are the limits of nanoparticle strengthening? Can the ideal strength of a matrix material be reached? To answer these questions, we need a detailed, atomic scale understanding of the interactions between dislocations and obstacles. Fortunately, simulations are beginning to explore this interaction.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3