Environmental Passivation and Temperature Cycling of PCBM - Polymer Solar Cells

Author:

Anctil Annick,Merrill Andrew,Cress Cory,Landi Brian,Raffaelle Ryne

Abstract

AbstractIn the present work, polymer solar cells were fabricated from composite blends of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene)-(P3HT with PCBM[60] and PCBM[70]. The composite blends were used as active layers in an ITO/PEDOT:PSS/active layer/Al device structure. Power conversion efficiencies have been measured from current-voltage (I-V) measurements for each of these different composite blends under simulated AM1.5 illumination. In the case of the MEH-PPV devices, the I-V performance has been measured as a function of polymer molecular weight, type of fullerene derivative (C60 or C70), and PCBM:polymer ratios. The highest efficiencies for the ranges used in this study were obtained using the 150,000 g/mol MEH-PPV molecular weight, the C70 PCBM derivative, and a 1:4 MEH-PPV:PCBM ratio. The effect of thermal cycling on the I-V performance for both MEH-PPV and P3HT devices has also been measured from 77K to 330K. The devices exhibited a positive temperature coefficient for the short-circuit current density (Jsc), which dominated the overall efficiency of the device over this temperature range. Finally, the use of a combination of parylene and polymethylmethacralate for device passivation was shown to provide a dramatic reduction in device degradation under ambient conditions as compared to non-passivated devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3