Nanocrystalline Silicon Films Deposited by RF PECVD for Bottom-gate Thin-film Transistors

Author:

Esmaeili Rad Mohammad Reza,Lee Czang-Ho,Sazonov Andrei,Nathan Arokia

Abstract

AbstractThin-film transistors (TFTs) in active-matrix organic light emitting diode (AMOLED) displays are required to supply high and stable driving current to OLEDs. Top-gate TFTs with nanocrystalline silicon (nc-Si) active layer have shown promise to render high mobility and stable driving current. However, to be compatible with current production facilities, bottom-gate TFTs are demanded. Currently, bottom-gate nc-Si TFTs show insufficient field effect mobility and exhibit driving current instability due to presence of amorphous incubation layer at the interface with gate dielectric. Our research is motivated by the need to eliminate the incubation layer. In order to do so, we studied nc-Si deposition process to find the RF PECVD deposition regimes which lead to minimum incubation layer.We have deposited a set of undoped nc-Si films by 13.56 MHz PECVD at 250°C by varying RF power, reactor pressure, silane and hydrogen flow rates. Raman spectroscopy, constant-photocurrent method (CPM) and optical absorption have been used to measure film crystallinity, defect density and optical bandgap, respectively. Carrier transport in the films has been studied using dark conductivity, photoconductivity and conductivity activation energy measurements.Our results reveal that silane and hydrogen flow rates are the most contributing factors to film characteristics. The results also indicate that the reactor pressure does not have a significant effect on the film crystallinity. However, CPM data confirm that to obtain lower defect density, medium or high deposition pressures are preferred. We obtained films with dark conductivity and Raman crystallinity in the order of 10-6-10-7S/cm and 60-80 %, respectively. Furthermore, we have deposited nc-Si films as thin as 20nm with 60% crystallinity, which is crucial for bottom-gate TFTs. Finally, four different sets of bottom-gate TFTs have been fabricated by changing gate dielectric compositions and changing [SiH4]/([SiH4] + [H2]) gas flow ratio. The device performance, relationship to the film structure and deposition process, and future improvements will be discussed in details.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical properties of nanocrystalline silicon deposited by PECVD;Journal of Materials Science: Materials in Electronics;2007-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3