Thin Films of GeC Deposited Using a Unique Hollow Cathode Sputtering Technique

Author:

Huguenin-Love James L.,Soukup Rodney J.,Ianno Natale J.,Schrader Jason S.,Dalal Vikram L.

Abstract

AbstractExperimental results on thin films of the new material GexC1-x, deposited by a unique dual plasma hollow cathode sputtering technique are presented here. The (Ge, C) system is extremely promising since the addition of C to Ge has reduced the lattice dimensions enough to allow a lattice match to silicon, while increasing the bandgap close to that of c-Si. The sputtering is accomplished by igniting a dc plasma of the Ar and H2 gases which are fed through Ge and C nozzles, cylindrical tubes 30 mm in length with an 8 mm O.D. and a 3 mm I.D.The basic material, optical, and structural properties were analyzed. Film characterization was performed using Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Auger electron spectroscopy. Additional measurements such as Tauc bandgap, conductivity as a function of temperature and light intensity, and film uniformity have been made. The film properties from a variety of deposition conditions are discussed. The measurements made indicate that the films can be grown so that the C enters the material at lattice sites. In addition, the GexC1-x films absorb photons much more efficiently than either c-Si or c-Ge.Initial results on Al doped films are presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3