Physics of Solid-Phase Epitaxy of Hydrogenated Amorphous Silicon for Thin Film Si Photovoltaics

Author:

Stradins Paul,Yan Yanfa,Reedy Robert,Young David L.,Teplin Charles W,Iwaniczko Eugene,Xu Yueqin,Jones Kim,Teeter Glenn,Mahan A. Harv,Branz Howard M.,Wang Qi

Abstract

AbstractSolid state crystallization of hydrogenated amorphous silicon (a-Si:H) prepared by hot-wire CVD is studied in solid phase epitaxy mode. By using a novel optical method combined with cross-sectional TEM and SIMS, a reduction of epitaxial growth speed is observed with increase in a-Si:H film thickness. Namely, in films thinner that 0.5 micron, solid phase epitaxy velocity depends linearly on film thickness. As the film thickness increases beyond 1 micron, the average velocity of solid phase epitaxy decreases considerably with respect to that in thinner films. In this regime, its velocity becomes also time-dependent: initial slow propagation of crystallization front gets considerably accelerated after the front has traveled above 400nm. SIMS thickness profiles of hydrogen shows considerably more residual hydrogen in thicker films after the start of solid phase epitaxy. In addition, prolonged pre-dehydrogenation at lower temperatures results in the increase in the average epitaxy speed in thicker films. These phenomena are likely related to delayed hydrogen outdiffusion in thicker films, which also leads to time-dependent speed of the solid-phase epitaxy front. We conclude that excess residual hydrogen reduces the rate of solid-phase crystalline growth.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3