Author:
Farrokh Baroughi Mahdi,Sivoththaman Siva
Abstract
AbstractThis paper presents a measurement technique for studying of the interface between a nanocrystalline silicon (nc-Si) film and a crystalline silicon (c-Si) substrate using microwave photoconductivity decay (MWPCD). The nc-Si films were deposited using plasma enhanced chemical vapor deposition of highly hydrogen-diluted silane. The films were deposited on both sides of the high purity float-zone (FZ) Si wafers. The high resolution transmission electron microscope (HRTEM) analysis of the interface and the characterization of the effective excess carrier lifetime of the samples using MWPCD revealed the following results: (i) The crystallinity of the deposited nc-Si films is very high. The nc-Si film follows the crystal orientation of the substrate such that not a well-defined boundary between nc-Si film and the c-Si substrate is observed. (ii) A surface recombination velocity of less than 10 cm/s was measured for the interface region of the nc-Si/c-Si junctions. (iii) A small discontinuity in the band-energy diagram of the interface region was observed.
Publisher
Springer Science and Business Media LLC