Surface Coating of Hddr Processed and Mechanically Alloyed Powder Based on RE-TM

Author:

Kobe S.,Novak S.,Mcguiness P.J.,Mandrino D,Jenko M.

Abstract

ABSTRACTChemical surface modification can be used as a method for corrosion protection of sensitive powders based on intermetallic alloys between rare earth and transition metals. Surface coating is used for preventing fine powders, based on Nd-Fe-B, or Sm2Fe17−xTaxN3−δ prepared by HDDR processing and mechanically alloying, from hydrolysis. Powders coated by chemisorbed organic substance, after exposing to a humid atmosphere, do not show any chemical or physical change.Different coating agents were used and the sufficient amount of various materials was optimised with the emphasis on minimising their quantity. Simple experiment shows that the surfactant is successfully chemisorbed on the powder surface and that the coated powders are hydrophobic indefinitely. Magnetic properties were measured on samples after they were exposed to the same corrosion tests. Measurements on coated and bonded samples were compared with the measurements of non-coated and bonded samples. By using Auger electron spectroscopy the thickness of the coating was controlled. In order to distinguish the nature of the bonding between the powder surface and the surface-active substance FT-IR spectroscopy in absorbency and diffuse reflection modes was used. The protection of the fine particles is based on the formation of a covalent bond between the hydroxyl groups at the particle surface and the surface-active substance. The monomolecular layer of organic substance does not damage the magnetic properties of the powder, but successfully protect the powder against humidity.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference21 articles.

1. Surface characterization of chemically treated aluminium nitride powders

2. 4. Sagawa M. : Japanese Patent No. 63–38555 (1988)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3