Processing Sm-Fe(Ta)-N hard magnetic materials

Author:

Žužek K,Mcguiness PJ,Kobe S

Abstract

ABSTRACTSmFe based alloys interstitially modified with nitrogen are potential candidates for high energy permanent magnets. In order to obtain the optimum properties a thorough understanding of the starting material and processing parameters is required. The microstructures of two cast alloys of composition Sm13.8Fe82.2 Ta4.0 and Sm13.7 Fe86.3 were carefully examined with a SEM equipped with EDX and the exact stoichiometries of the phases were determined. The SmFeTa material was found to contain significant amounts of TaFe2as well as the Sm2Fe17, SmFe2, SmFe3 phases observed in the SmFe material but without the a-iron dendrites which are characteristic of the latter material. The optimum conditions necessary to provide the highest coercivities using the conventional HDDR process, and for the HDDR process combined with pre-milling were investigated. The coercivities obtained after using the HDDR process and subsequent nitriding were 680 kA/m for the SmFeTaN and 360 kA/m for the SmFeN samples. Significantly higher coercivites of 1000 kA/m for SmFeN and 1275 kA/m for SmFeTaN were achieved by reducing the particle size with milling prior to the HDDR process.The better coercivities obtained with the Ta containing sample were found to be due to the presence of a much smaller amount of a. The milling prior to the HDDR treatment improves the magnetic properties because of the small particle size which prevents the grains growing too large, with their consequent very negative effect on the coercivity.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3