Direct air capture of CO2: A response to meet the global climate targets

Author:

Ozkan Mihrimah

Abstract

Highlights DAC can help deal with difficult to avoid emissions. Large-scale deployment of DAC requires serious government, private, and corporate support and investment particularly to offset the capital cost as well as operational costs. Further optimizations to the costs can be found in choice of energy source as well as advances in CO2 capture technology such as high capacity and selectivity materials, faster reaction kinetics, and ease of reusability. Abstract Direct air capture (DAC) technologies are receiving increasing attention from the scientific community, commercial enterprises, policymakers and governments. While deep decarbonization of all sectors is required to meet the Paris Agreement target, DAC can help deal with difficult to avoid emissions (aviation, ocean-shipping, iron-steel, cement, mining, plastics, fertilizers, pulp and paper). While large-scale deployment of DAC discussions continues, a closer look to the capital and operational costs, different capture technologies, the choice of energy source, land and water requirements, and other environmental impacts of DAC are reviewed and examined. Cost per ton of CO2 captured discussions of leading industrial DAC developers with their carbon capture technologies are presented, and their detailed cost comparisons are evaluated based on the choice of energy operation together with process energy requirements. Validation of two active plants’ net negative emission contributions after reducing their own carbon footprint is presented. Future directions and recommendations to lower the current capital and operational costs of DAC are given. In view of large-scale deployment of DAC, and the considerations of high capital costs, private investments, government initiatives, net zero commitments of corporations, and support from the oil companies combined will help increase carbon capture capacity by building more DAC plants worldwide. Graphic abstract

Funder

NA

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference14 articles.

1. C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 10, 647–653 (2020)

2. United Nations Framework Convention on Climate Change (2015) Adoption of the Paris Agreement—proposal by the president, UNFCCC, Paris, http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf. Accessed 25 April 2021

3. National Academies of Sciences, Engineering, and Medicine, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (The National Academies Press, Washington, DC, 2019).

4. D.W. Keith, G. Holmes, D. St. Angelo, K.A. Heidel, Process for capturing CO2 from the atmosphere. Joule. 8, 1573–1579 (2018)

5. C. Beuttler, L. Charles, J. Wurzbacher, The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front. Clim. 1, 10 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3