Author:
Korb J.-P.,Van-Quynh A.,Bryant R. G.
Abstract
AbstractThe magnetic field dependence of 1H spin lattice relaxation rates in noncrystalline macromolecular solids including engineering polymers, proteins, and biological tissues is described by a power law, 1/T1 = Aω0-b, where ω0 is the Larmor frequency, A and b are constants. We show that the magnetic field dependence of the proton 1/T1 may be quantitatively related to structural fluctuations along the backbone that modulate proton-proton dipolar couplings. The parameters A and b are related to the dipolar coupling strength, the energy for the highest vibrational frequency in the polymer backbone, and the fractal dimensionality of the proton spatial distribution.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Field-cycling NMR relaxometry;Progress in Nuclear Magnetic Resonance Spectroscopy;2004-07