Cause of the Decrease in Electromigration Resistance in Am/Al3Ti Lines

Author:

Kameyama A.,Masuzaki K.,Okabayashi H.,Sakata T.,Mori H.

Abstract

AbstractTo investigate the cause of the lower electromigration (EM) resistance in Al/Al3Ti lines compared to that in Al/TiN lines, we studied the Al microstructure and the EM characteristics. Even after fine-grained Al3Ti formation through a reaction of the Al and Ti, the Al microstructure of the unreacted Al on the AI3Ti remained a bamboo grain structure with a high 111 orientation. Thus, the Al grain structure and texture did not affect the EM resistance. The critical current density for voiding was 0.64 MA/cm2. The Al drift velocity in the Al/Al3Ti bamboo lines was two orders of magnitude higher than that for Al/TiN bamboo lines from 180°C to 280°C. This higher Al drift velocity decreased the EM resistance in the lines. The activation energy of Al drift in the AI/AI3Ti lines was 0.6 to 0.7 eV, which is lower than that for Al lattice diffusion. Thus, the Al lattice is not the dominant transport path in Al/Al3Ti lines. The dependence of the Al drift velocity on the line size showed that the Al/Al3Ti interface was the dominant path in the Al/Al3Ti bamboo lines. Thus, we concluded that the rapid Al transport through the Al/Al3Ti interface decreases EM resistance in Al/Al3Ti lines.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3