Mineralogy-Petrology and Groundwater Geochemistry of Yucca Mountain Tuffs

Author:

Bish David L.,Ogard Allen E.,Vaniman David T.

Abstract

Research at Yucca Mountain in southern Nevada (Fig. 1), is being supported by the US Department of Energy to evaluate this site as a possible high-level radioactive waste repository. Yucca Mountain is underlain by a thick sequence of ash-flow and bedded tuffs, with a few silicic lavas.Variations in mode of tuff emplacement and postemplacement alterations have given rise to pyroclastic rocks of quite variable character, ranging from nonwelded to densely welded, vitric to devitrified, and nonzeolitized to completely zeolitized. The proposed repository horizon is in the lower portion of the thick, densely welded Topopah Spring Member of the Paintbrush Tuff in the unsaturated zone. Within the Topopah Spring Member and in the rocks beneath the proposed repository horizon, there are significant variations in mineralogy [1]. Such changes in mineralogy include the localized occurrence of such potentially reactive phases as cristobalite,tridymite, smectite, and volcanic glass. The important sorptive minerals clinoptilolite and mordenite also occur in discrete horizons, and their distribution changes horizontally and vertically. We have undertaken a study of the mineralogy in Yucca Mountain as a function of depth and lateral position to predict the horizontal and vertical distribution of these important potentially reactive and sorptive minerals. This knowledge has aided in locating the repository horizon and will help to put bounds on mineralogic variability within the repository horizon. In addition, studies of the distribution of minerals in Yucca Mountain allow us to deduce the factors that have controlled mineral distributions and to predict mineral assemblages along transport pathways [1,2]. In addition, we are investigating the groundwater chemistry because it and mineralogy are used as input to codes for calculating the transport rate of waste elements from the repository to the accessible environment.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference9 articles.

1. High-temperature single-crystal study of the cristobalite inversion *

2. 1. Bish D. L. , Vaniman D. T. , Byers F. M. Jr. , and Broxton D. E. , Los Alamos National Laboratory report LA-9321-MS (November 1982).

3. 3. Caporuscio F. , Vaniman D. , Bish D. , Broxton D. , Arney B. , Heiken G. , Byers F. , Gooley R. , and Semarge R. , Los Alamos National Laboratory report LA-9255-MS (July 1982).

4. 4. Daniels W. , Los Alamos National Laboratory report LA-9328-MS (December 1982).

5. 5. Heiken G. H. and Bevier M. L. , Los Alamos National Laboratory report LA-7563-MS (February 1979).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3