Author:
Crawford M. H.,Allerman A. A.,Fischer A. J.,Bogart K. H. A.,Lee S. R.,Chow W. W.,Wieczorek S.,Kaplar R. J.,Kurtz S. R.
Abstract
ABSTRACTMaterials studies of high Al-content (> 30%) AlGaN epilayers and the performance of AlGaN-based LEDs with emission wavelengths shorter than 300 nm are reported. N-type AlGaN films with Al compositions greater than 30% reveal a reduction in conductivity with increasing Al composition. The reduction of threading dislocation density from the 1–5 × 1010 cm-2 range to the 6–9 × 109cm-2 range results in an improvement of electrical conductivity and Al0.90Ga0.10N films with n= 1.6e17 cm-3 and μ=20 cm2/Vs have been achieved. The design, fabrication and packaging of flip-chip bonded deep UV LEDs is described. Large area (1 mm × 1 mm) LED structures with interdigitated contacts demonstrate output powers of 2.25 mW at 297 nm and 1.3 mW at 276 nm when operated under DC current. 300 μm × 300 μm LEDs emitting at 295 nm and operated at 20 mA DC have demonstrated less than 50% drop in output power after more than 2400 hours of operation. Optimization of the electron block layer in 274 nm LED structures has enabled a significant reduction in deep level emission bands, and a peak quantum well to deep level ratio of 700:1 has been achieved for 300 μm × 300 μm LEDs operated at 100 mA DC. Shorter wavelength LED designs are described, and LEDs emitting at 260 nm, 254nm and 237 nm are reported.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献