Reverse-annealing phenomenon during the high-temperature implantation of Ar+ into GaN

Author:

Usov Igor O.,Parikh Nalin R.,Thomson Darren,Davis Robert F.

Abstract

AbstractA systematic investigation of the damage accumulation in GaN films induced by 150keV Ar ions as a function of implantation temperature and dose rate has been conducted. The depth distribution of the disorder in the Ga sublattice has been measured by RBS/channeling spectrometry with a glancing angle detector geometry to provide enhanced depth resolution. Two disordered regions were identified in the damage depth distribution: a near-surface peak and a bulk damage peak. These regions exhibit different behavior as a function of implantation temperature. The height of the near-surface peak, as expected, decreased with implantation temperature approaching the magnitude of the unimplanted sample. The displaced atomic density in the bulk damage peak also followed this tendency and decreased in the temperature range from room temperature to 500°C. The implantation at higher temperatures resulted in an increase in the amount of damage, reaching a maximum at about 700°C and displayed a characteristic “reverse annealing” behavior. Further increase of the implantation temperature to 1000oC reduced the disorder. The influence of the dose rate and implantation temperature on the radiation damage accumulation is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of high-temperature implantation of Mg ions into GaN;Japanese Journal of Applied Physics;2020-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3