Quantitative Defect Analysis of GaN Thick Films by TEM and AFM

Author:

Bhaskara Praveena,Sung Changmo,Bliss David,Suscavage Michael

Abstract

AbstractEver since the discovery of the astonishing properties of GaN, many research groups have been involved in the processing of the perfect GaN crystal. Iodine Vapor Phase Growth (IVPG) technique was employed to grow GaN epilayer on a MOCVD pre-deposited buffer layer. This new epitaxial system was characterized by TEM, AFM and EFM. A complete AFM study involved the polarity measurements and the etch pit density measurements. For the first time a systematic study was performed of the dislocation density changing as a function of distance from the substrate. TEM performed on the cross-section, as well as the plan view, of the samples showed a remarkable decrease in the dislocations in the current system, compared to the samples that were solely deposited by MOCVD. Advanced analytical methods of polarity and dislocation density measurements have been established to understand the relation between microstructure and electrical properties of the thick film GaN. Electrostatic Force Microscopy has been suggested as a potential tool for obtaining polarity information.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3