Simulation and Design of Amorphous Silicon Thin-Film Transistors for Driving Color Detectors

Author:

Caputo D.,Colalongo L.,Irrera F.,Lemmi F.,Palma F.

Abstract

ABSTRACTPractical use of amorphous silicon stacked-junction color detectors in large-area arrays requires periodic readout of the photo-charge stored in the capacitance of the device by a transient technique of sensing. In any stacked-junction devices, color information is obtained by the “self-biasing” process: during an integration time, the three junctions independently lose charge; during the readout pulse, the capacitances of the three junctions in electrical series are re-charged. Equilibrium is reached after a few cycles, when the charge integrated in a cycle by each junction is the same, and equals the readout charge. The amount of charge is determined by the reverse biased junction and accounts for the light intensity.Dimensioning the amorphous silicon Thin Film Transistor (TFT) used as a pixel switch for the detector is a critical part of the project of a color imager. The actual design determines the self-bias process duration and the readout accuracy. The typical large thickness difference between the detector junctions makes the constraints for the switching process extremely demanding: since a greater capacitance is expected in the thinner top junction detecting blue radiation, the on-resistance must be reduced. Since the front junction does not ensure full rejection of green and red light, a calculation must be performed to extract the information on blue radiation. This requires further precision in the readout process.In this work we present a simulation study of the self-biasing process. Both a-Si:H TFT and the a-Si:H p-i-n-i-p two-color detectors are simulated by a finite-elements two-dimensional simulator ensuring a correct modeling of both the devices. Simulations allow to study in detail the timing and the accuracy of the self-biasing process. Including electrostatic capacitance and trapped charge, a set of design rules for the TFT is achieved in terms of on-state design. Similar considerations can be extended to the case of ATCD three-color detectors.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3