Abstract
AbstractWe simulate the microscopic details of brittle fracture in silicon by dynamically coupling empirical-potential molecular dynamics of a strained sample to a quantum-mechanical description of interatomic bonding at the crack tip. Our simulations show brittle fracture at loads comparable to experiment, in contrast with empirical potential simulations that show only ductile crack propagation at much higher loading. While the ductility of the empirical potentials can be attributed to their short range, it is unclear whether the increased range of the tight-binding description is sufficient to explain its brittle behavior. Using the multiscale method we show that at a temperature of 1100 K, but not at 900 K, a dislocation is sometimes nucleated when the crack tip impinges on a vacancy. While this result is too limited in length and time scales to directly correspond to experimental observations, it is suggestive of the experimentally observed brittle to ductile transition.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Atomistic characterization of three-dimensional lattice trapping barriers to brittle fracture;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2006-02-21