Abstract
AbstractSeveral series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have recently been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests.These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs.These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplaced under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced tinder accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass.
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. 7. Westinghouse Electric Corp, Advance Energy Systems Division, Engineered Waste Package Conceptual Design: Defense High-Level Waste (Form 1), Commercial High-Level Waste (Form 1), and Spent Fuel (Form 2) Disposal in Salt, ONWI-438, Office of Nuclear Waste Isolation, Columbus, OH (April 1983). (Formerly printed as AESD-TME-3131, September 1982.)