Self-Radiation Damage in Actinide Host Phases of Nuclear Waste Forms

Author:

Weber W. J.,Wald J. W.,Matzke Hi.

Abstract

AbstractThree crystalline ceramic materials, which occur as host phases for the long-lived actinides in many nuclear waste formulations, were doped with Cm-244, and the effects of self-radiation damage from alpha decay on microstructure and physical properties were investigated. The irradiation-induced microstructure consisted of individual amorphous tracks from both the alpha-recoil particles and the spontaneous fission fragments. The eventual overlap of the tracks at higher doses leads to a completely amorphous state. This radiation-induced amorphization process results in measured increases in volume, leachability, and stored energy. Thermal recovery of the radiation-induced swelling and amorphization occurs with full recrystallization to the initial structures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. X‐ray diffraction, differential scanning calorimetry and evolved gas analysis of aged plutonium tetrafluoride (PuF4);Journal of Radioanalytical and Nuclear Chemistry;2021-06-23

2. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7;Journal of Nuclear Materials;2016-10

3. Thermal annealing of natural, radiation-damaged pyrochlore;Zeitschrift für Kristallographie - Crystalline Materials;2016-08-30

4. Molten salt synthesis of titanate pyrochlore waste-forms;Ceramics International;2016-03

5. Properties of Radioactive Wasteforms;Waste Immobilization in Glass and Ceramic Based Hosts;2010-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3