Growth of Epitaxial CoSi2 Through a Thin Interlayer

Author:

Tung R. T.

Abstract

AbstractThe phenomenon of Ti-interlayer mediated epitaxy (TIME) of CoSi2 on Si(100) has attracted much academic and technological interest. As yet, the role of the interlayer, Ti, is not fully understood. The various drawbacks of the TIME process have driven the search for a better interlayer. New results are presented which demonstrate the efficacy of a thin SiOx layer, grown in a peroxide-containing aqueous solution, in inducing nearly perfect epitaxial growth of CoSi2 on practically all surfaces of Si. This technique, dubbed oxide mediated epitaxy (OME), allows a thin layer of epitaxial CoSi2 to grow sub-surface, leaving the SiOx layer largely on the surface of the silicide. An interesting result of the surface oxide cap is a significant re-evaporation of cobalt observed during deposition at elevated temperatures. Thicker (10-30nm), excellent quality, CoSi2 single crystal thin films have been grown by repeated growth sequences on Si(100), (110), (211) and (511). Nearly perfect type A oriented CoSi2 layers were grown on Si(111) using mixed A/B oriented template layers.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical Properties of Surface Silicides;Surface and Interface Science;2013-11-13

2. Interfaces;Materials Science and Technology;2013-02-15

3. Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature;Korean Journal of Materials Research;2006-09-27

4. The barrier effect of a WxTa(1−x)nanolayer on formation of single-texture CoSi2on Si(1 0 0);Semiconductor Science and Technology;2006-07-12

5. Epitaxial silicide formation on recoil-implanted substrates;Journal of Applied Physics;2005-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3