Characterization of components of nano-energetics by small-angle scattering techniques

Author:

Mang Joseph T.,Hjelm Rex P.,Son Steven F.,Peterson Paul D.,Jorgensen Betty S.

Abstract

Small-angle scattering (SAS) and ultra small-angle scattering techniques, employing x-rays and neutrons, were used to characterize six different aluminum nanopowders and nanopowders composed of molybdenum trioxide and tungsten trioxide nanoparticles. Each material has different primary particle morphology and aggregate and agglomerate geometry, and each is important to the development of nano-energetic materials. The combination of small-angle and ultra small-angle techniques allowed a wide range of length scales to be probed, providing a more complete characterization of the materials. For the aluminum-based materials, differences in the scattering of x-rays and neutrons from aluminum and aluminum oxide provided sensitivity to the metal core and metal oxide shell structure of the primary nanoparticles. Small-angle scattering was able to discriminate between particle size and shape and agglomerate and aggregate geometry, allowing analysis of both aspects of the structure. Using the results of these analyses and guided by scanning electron microscopy (SEM) images, physical models were developed, allowing for a quantitative determination of particle morphology, mean nanoparticle size, nanoparticle size distribution, surface layer thickness, and aggregate and agglomerate fractal dimension. Particle size distributions calculated using a maximum entropy algorithm or by assuming a log-normal particle size distribution function were comparable. Surface area and density determinations from the small-angle scattering measurements were comparable to those obtained from other, more commonly used analytical techniques: gas sorption using Brunauer–Emmett–Teller analysis, thermogravimetric analysis, and helium pycnometry. Particle size distribution functions derived from the SAS measurements agreed well with those obtained from SEM.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3