Author:
Yuan Fuping,Prakash Vikas,Lewandowski John J.
Abstract
Results are presented on the shock response of a zirconium-based bulk metallic glass (BMG), Zr41.25Ti13.75Ni10Cu12.5Be22.5, subjected to planar impact loading. An 82.5-mm bore single-stage gas-gun facility at Case Western Reserve University, Cleveland, OH, was used to conduct the shock experiments. The particle velocity profiles, measured at the back (free) surface of the target plate by using the velocity interferometer system for any reflector (VISAR), were analyzed to (i) better understand the structure of shock waves in BMG subjected to planar shock compression, (ii) estimate residual spall strength of the BMG after different levels of shock compression, and (iii) obtain the Hugoniot elastic limit (HEL) of the material. The spall strength was found to decrease moderately with increasing levels of the applied normal impact stress. The spall strength at a shock-induced stress of 4.4 GPa was 3.5 GPa while the spall strengths at shock-induced stresses of 5.1, 6.0, and 7.0 GPa were 2.72, 2.35, and 2.33 GPa, respectively. The HEL was estimated to be 6.15 GPa.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献