AlN nanowires for Al-based composites with high strength and low thermal expansion

Author:

Tang Y.B.,Liu Y.Q.,Sun C.H.,Cong H.T.

Abstract

Based on the synthesis of a sufficient amount of AlN nanowires (AlN-NWs), AlN-NWs/Al composites with homogenously distributed AlN-NWs were fabricated. Microstructural observations reveal that the interface between AlN-NWs and Al matrix is clean and bonded well, and no interfacial reaction product was formed at the nanowire-matrix boundary. Mechanical properties including yield and tensile strength of the composites were improved with AlN-NWs volume fraction changing from 5 to 15 vol%, and the maximum yield and tensile strengths of the composite were about 6 and 5 times, respectively, as high as those of Al matrix. Meanwhile, AlN-NWs effectively decreased the coefficient of thermal expansion (CTE) of the composites, and the CTE of 15 vol% composite was about one half that of Al matrix. The results obtained suggest that AlN nanowire is a promising reinforcement for optimizing the mechanical and thermal properties of metal matrix composites.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3