Hydration-induced coupling of the excitonic state of Y2O3with its phonon: Negative effect on the luminescence efficiency of Y2O3:Eu+3nanophosphor

Author:

Nayak A.,Sahoo R.,Debnath R.

Abstract

Luminescence properties of a series of samples of Y2O3:Eu+3red phosphor of particle sizes ranging from 50 to 300 nm were investigated as a function of time to decipher the long-standing mystery of the effect of reduction of particle size on the luminescence efficiency of the phosphor. The samples were found to lose luminescence efficiency and suffer a change in the excitation profile with time. Infrared studies showed that although the samples at their freshly prepared stage were almost free from contaminated water, on aging in air at room temperature, they absorbed the latter. The phenomenon of hydration-induced coupling of the excitonic state of Y2O3with one of its Fumodes was detected in the case of the aged sample, which was shown to be instrumental in introducing newer nonradiative channels in the system. Because of larger surface-to-volume ratio, the effect was most pronounced in the case of nanocrystalline samples.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3