Surface displacements and surface charges on Ba2CuWO6 and Ba2Cu0.5Zn0.5WO6 ceramics induced by local electric fields investigated with scanning-probe microscopy

Author:

Herber Ralf-Peter,Schneider Gerold A.

Abstract

Ba2CuWO6 (BCW) was first synthesized in the mid 1960s, and it was predicted to be a ferroelectric material with a very high Curie temperature of 1200 °C [N. Venevtsev and A.G. Kapyshev: New ferroelectrics. Proc. Int. Meet. Ferroelectr.1, 261 (1966)]. Since then, crystallographic studies were performed on the compound with the result that its crystal structure is centrosymmetric. Thus for principal reason, BCW cannot be ferroelectric. That obvious contradiction was examined in this study. Disk-shaped ceramic samples of BCW and Ba2Cu0.5Zn0.5WO6 (BCZW) were prepared. Because of the low electrical resistivity of the ceramics, it was not possible to perform a typical polariszation hysteresis loop for characterization of ferroelectric properties. Scanning electron microscopy investigations strongly suggest that the reason for the conductivity is found in the impurities/precipitations within the microstructure of the samples. With atomic force microscopy (AFM) in piezoresponse force microscopy (PFM) mode, it is possible to characterize local piezoelectricity by imaging the ferroelectric domains. Neither BCW nor BCZW showed any domain structure. Nevertheless, when local electric fields were applied to the surfaces of the ceramics topographic displacements, imaged with AFM, and surface charges, imaged with Kelvin probe force microscopy (KFM) and PFM, were measured and remained stable on the surface for the time of the experiment. Therefore BCW and BCZW are considered to be electrets and possibly relaxor ferroelectrics.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3