Deformation micromechanisms of ZnO single crystals as determined from spherical nanoindentation stress–strain curves

Author:

Basu Sandip,Barsoum Michel W.

Abstract

In this work, instrumented nanoindentation experiments with two spherical tips with radii of 13.5 and 1 μm were used to explore the deformation behavior of ZnO single crystals with two orientations, C (basal) and A (prism). By converting the nanoindentation load–displacement data to stress–strain curves, we show that the main reason the hardening rates are higher for the C plane than they are for the A plane is the activation of dislocations—with widely different flow stresses—on different sets of slip planes. For the former, glide occurs on basal planes as well as pyramidal planes; for the latter, glide occurs predominantly on basal planes. The C plane is roughly twice as hard as the A plane, probably due to the orientation of basal planes with respect to the indentation axis. A Weibull statistical analysis of the pop-in stresses indicates that the inherent defect concentration at or near the surface is the main factor for the initiation of plastic deformation. The strain energy released when the pop-ins occur determines their extent. The elastic moduli values, determined by Berkovich nanoindentation, are 135 ± 3 GPa and 144 ± 4 GPa for the C and A planes, respectively. In the C orientation repeated indentations to the same stress result in fully reversible hysteretic loops that are attributed to the formation of incipient kink bands.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3