Phase stability and consolidation of glassy/nanostructured Al85Ni9Nd4Co2 alloys

Author:

Zhang L.C.,Calin M.,Branzei M.,Schultz L.,Eckert J.

Abstract

Al85Ni9Nd4Co2 metallic glass/nanostructured ribbons and powders were used as starting materials for producing bulk amorphous/nanostructured Al-based alloys. Glassy ribbons were obtained by melt spinning at wheel surface velocities ranging from 5 to 37 m/s. The amorphous ribbons exhibited a supercooled liquid region of ∼20 K, a reduced glass transition temperature of ∼0.47 and γ ∼ 0.328. Mechanical alloying of the elemental powder mixture did not lead to amorphization. However, amorphous powders obtained by milling the glassy ribbons for 9 h exhibited a thermal stability similar to the initial ribbons. Isothermal differential scanning calorimetry measurements were used to determine the consolidation parameters of the glassy powders. Consolidation at 513 K by uniaxial hot pressing and hot extrusion indicated that the former method leads to bulk glassy samples, whereas the latter one yields nanostructured α-Al/glassy matrix composites.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3